
PRECESSIONAL MOTIONS IN RIGID BODY DYNAMICS 
AND THE DYNAMICS OF SYSTEMS 

OF COUPLED RIGID BODIES-/- 

Precessional motions of a rigid body may be classed among the most intuitive motions from the 
mechanical point of view, while at the same time they are widely used in the theory of gyroscopic systems, 
which is of importance in engineering. As A. Yu. Ishlinskii remarked [l, pp. 35.1, 3541: **After nutation 
has damped out, the subsequent slow motion of the axis of the rotor, known as precessional motion, 
agrees to a significant degree of accuracy with the precessional equations of gyroscope theory . . In 
gyroscope theory, allowance for the nutational terms in the differential equations of motion of gyroscopic 
systems turns out to be necessary when studying the behaviour of high-precision gyroscopes”. 

In the problem of the motion of a heavy rigid body with a fixed point, the regular precession of a 
Lagrange gyroscope is a classical example of precessional motion. The foundations for the systematic 
study of precessional motions in rigid body dynamics were laid by Appel’rot [2] and Grioli [3, 41. 
Appel’rot considered precession about the vertical in gyroscopes whose inertia ellipsoid was an ellipsoid 
of rotation, with its centrc of gravity lying in the equatorial plane (gyroscopes similar to Kovalevskaya 
and Goryachev-Chaplygin gyroscopes). He showed that for such gyroscopes, motions in which the 
constant angle between the principal axis and the vertical is not a rigid angle are dynamically impossible. 

Grioli [3, 41 can be credited with numerous results in rigid body dynamics. The most important one 
is the construction of a new solution of the Euler-Poisson equations describing the regular precession 
of a heavy rigid body about an inclined axis. 

Scvcral publications [5-15]i: have considered the precessional motion of a rigid body with a fixed 
point from general positions, proposing methods for investigating the conditions for precession to exist 
not only in the classical problem but also in its generalizations. 

Prcccssional motions of asymmetric bodies have been investigated in the problem of the motion of 
a body suspended on a rod, and in the problem of the motion of a system of coupled rigid bodies [ 10, 
11. 1.3. IO]. 

I. THE KINEMATIC CONDITIONS FOR PRECESSIONAL MOTIONS 
OF A RIGID BODY WITH A FIXED POINT 

Suppose that. in a fixed space, some fixed direction characterized by a unit vector v (for example, the 
direction of the axis of symmcty.of a force field) exists. In addition, assume that y is a unit vector, also 
unchangeable in space. The orlgms of the vectors 1-1 and y coincide with the fixed point 0 of the rigid 
body. If we let w denote the angular velocity of the body, WC have the following equations for v and y 

v = vxw, j = yxo (1.1) 

where the dot denotes differentiation with respect to time in a moving system of coordinates. 
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Let Ko be the angle between the vectors v and y. Then we have the obvious kinematic relations 

v.v = 1, y.y = 1, v.y = co (1.2) 

where cII = cos ~0. The motion of the body is said to bc precessional if, as long as the body is in motion. 
the angle between the vectors a and y, where a is a unit vector rigidly attached to the body (a = 0). is 
constant. This motion may be characterized by an invariant relation 

a. Y. = u. (1.3) 

where ~l~, = cosO,, and 8,) is the constant angle between a and y. 
Let us differentiate both sides of Eq. (1.3) along trajectories of the second equation of ( 1. I). WC obtain 

the equality o . (a x y) = 0, that is 

0 = cp,(f)a + v2(l)y ( 1 .d) 

where the cast a x y = 0 is excluded since it leads cithcr to uniform rotation of the body or to pendulum 
motion. Substituting ( 1.4) into Eq. ( I. l), WC obtain 

if = cp,(r)(vxa)+cp,(r)(vxy), y = cP,(t)(yxa) (1.5) 

As a rule [6-81, the moving system of coordinates is chosen in such a way that a = (0, 0, 1). Then 
the relations (I 3) and y . y = 1 arc satisfied by putting 

y, = absincp, y2 = abcoscp, y3 = aa ( 1.6) 

where N’ 
7 

,, = Y’ 1 - r/i, = sine,,. Substituting cxprcssions (1 .h) into the scalar equations following from 
the second equation of system (l.S), we obtain q,(t) = Q(t). Bearing the first and third equalities of 
(1.2) and the first equation of (1.5) in mind, we obtain the following representation of the vector v 

where 

v = (c,,+a,bbsin+)y-bbasinfj-b;(yxa)cos@ ( 1.7) 

h; = b&l;, b, = dl -c: = sinK,, cp2(r) = 4 

In the approach taken hcrc. 8,,. cp and Q arc the Euler angles. so defined that the system of coordinates 
associated with the vector a is the moving system and that associated with the vector y is the fixed system. 
Since q,(t) = Cp, cp2(r) = 4, wc can rewrite formula ( I .4) as 

0 = @a+$y (1.8) 

Consequently, in prcccssional motions the components of the vector y arc expressed in terms of one 
variable cp, those of the vector v in terms of two variables cp and Cp, and the angular velocity vector has 
the form (1.8). 

A precessional motion is called regular precession if Cp and 4 are constants: if one of these functions 
is a constant, the motion is called semi-regular precession. If neither ci, nor 4 is a constant, the motion 
is called a precession of the general type [3-h]. 

Besides relations (1.3) and (1.8) there is an equation due to Grioli [3] that can bc taken as the 
condition for motion to be precessional. It follows from the second equation of system (1. I), by the 
condition y3 = II~), that 02yl - wly2 = 0, where CO, and w2 are the first two components of the vector (11 
in the moving system of coordinates. Differentiation of this equality along tr:tjcctories of the kinematic 
equations for yI and yz yields the equation 

&Y, - h,Y, -a&$ + w:> + q(qy, + qy,) = 0 

Eliminating yI and y2 from this equation by using the equalities $ + y$ = u’: and toly, - oIy2 = 0, WC 
arrive at Grioli’s equation 

qti, - co+, + o$o; + co;> -(co: + o;)3’2Ctge, = 0 ( 1.9) 
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Equation (1 .Y) has only been used in [ 171; it has not been widely employed otherwise. 
If the kinematic conditions for the motion to bc prcccssional arc considered in the form ( I .3), (1.6), 

the components of the vector v (1.7) arc: 

v, = abc,,sincp - b,(coscpcos$ - aOsincpsino) 

~2 = abcoscp + b,( sincpcos$ + a,coscpsin$) 

v3 = aOcO - boubsin$ 

(1.10) 

Another way of introducing the Euler angles, not including the angle between the vectors a and y 
as one of the Euler angles, is sometimes proposed for investigating prcccssional motions. Let ~1, u and 
M’ be the Euler angles, whcrc II is the angle between the vectors a and JJ. Then 

w, = Ssinusinv+ ticosv, O2 = Gsinucosv-tisinv, cl+ = D+ticosu (1.11) 

After substituting relations ( 1. I I ) into Eq. ( 1.9). WC have 

(\ijti - iiti)sinu + ti(2ti + dsin2u)cosu = (ti* + G2sin2u) 
3/2 

ctg8, (1.12) 

Note that when Ko = 0 the vectors u and y coincide, and consequently the angles u. u and u’ are identical 
with I& cp and 4, respectively. Differential equation (1.12) has the obvious solution II = 8,). It can be 
shown that its other solution is [IS] 

COS(W-WC,) = 
cos u cos Kg - cos 8, 

sin Kg sin u 
(1.13) 

where u’,, and Kfl arc arbitrary constants. Thus, if the Euler angles are introduced in the traditional 
manner. that is, are not associated with the characteristic prcccssion directions a and y, but are defined 
relative to the axis of symmetry of the force field (the vector u), the condition for the motion to be 
precessional has the form (1.13). 

7. A METHOD FOR INVESTIGATING PRECESSION ABOU’I 
THE VEKTICAL IN THE PROBLEM OF THE MOTION OF 
A GYROSTAT UNI)ER THE INFLUENCE OF POTENTIAL 

AND GYROSCOPIC FORCES 

Let us consider the problem of the motion of a gyrostat with a fixed point under the influence of potential 
and gyroscopic forces, which is described by dlttcrential equations of the Kirchhoff class [ 19, 201 

AA = (Ao+~)xo+oxBv+sxv+vxCv, v = vxw (2.1) 

which have integrals 

(Ao.o)-2(s.v)+(Cv.v) = 2E, v.v = 1, 2(Ao+~).v-(Bv.v) = 2k (2.2) 

where E and k arc arbitrary constants. In Eqs (2.1) and (2.2), (I) = (o,, o)?, 03) is the angular velocity 
of the gyrostat, 1, = (v,, vz, v3) is the unit vector of the axis of symmetry of the force field, A = (h,, h,, 
h3) is the gyrostatic moment, s = (s ,, .s ?, sj) is a vector collinear with the vector of the generalized centrc 
of mass, A is the inertia tensor. and R and C are 3 x 3 symmetric matrices. In this paper, Eqs (2.1) will 
bc interpreted as the equations of motion of a gyrostat in a force field which is the superposition of an 
electric, a magnetic and a Newtonian field [20]. Equations (2.1) arc classified as Kirchhoff equations 
in view of the familiar hydrodynamic analogy between the present problem and the problem of the 
motion of a body in a fluid [ IY, 201. 

We will consider the precessional motions of the gyrostat about the vertical, that is. we put y = v in 
Eqs (1.3), (1.6) and (1.8). Then 

V = (absincp,ubcos(P,aO), 0 = @a+$v (2.3) 
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Substituting the cxprcssion for w from (2.3) into the integrals (2.2). WC obtain 

$(Aa. v) + ~(Av v) = F,(v,, v2, v,) 

@‘(Aa a) + 2@$(Aa. v) + +‘(Av v) = F,(v,, vp, v,) 

where 

F,(v,,v,,v,) = k-(h)+;(Bv’v) 

F2(v,, v2, v3) = 2E+ 2(s. v) - (Cv v) 

(3.3) 

(2.5) 

Relations (2.4) imply [6-S] that 

d,= F,(v,, v2, vi) - ip(Aa VI .z (Av.v)F,jv,,v,,v,)-F:(v,,v2.v~) 
(Av v) 

-. q-l =- 
F,(v,, ~2, v,) 

(2.0) 

whcrc F;(V), vl, v;) = (Aa a)(,4v 17) - (/la v)’ > 0 by virtue of the fact that the matrix,1 is positive 
definite and the variables v,. \ll and vi satisfy the kinematic condition vf + vi + vi = I. 

Since Poisson’s equation in system (7.1) holds for the equalities (2.3). we turn to the dynamical 
equation in (2.1). Substituting expressions (2.3) into the first equation of system (2.1) and using the 
second equation, we obtain ;I single vector equality. Since the vectors a, v and Aa x/Iv xc indcpcndent, 
we consider the three equations obtained by equating to zero the scalar products of these vectors and 
the vector on the Icft of the ~~t’orcmcntionccl equality. It can be shown that the first two equations arc 
linear combinations of Eqs (3.4). while the third is 

ip$lZ(Aa. a)(Av)2 - F,(v,, v2, v,)Tr(A) - 2(Aa. v)(Aa Av)] - 

-ip2[(Aa)2(Aa v) - (Aa. a)(Aa Av)] - $2[(Av. v)(Aa Av) - (Aa. v)(Av)~] + 
+ @[(Aa. Bv)(Aa v) - (Aa. a)(Av . Bv) + (Aa. a)(Av 1) - (Aa. k)(Aa v)] + 

+ t$[(Aa Bv)(Av v) - (Aa. v)(Av Bv) + (Aa. v)(Av k) - (Av v)(Aa h)] + 
+ (Av v)((Aa AC) - (Aa. s)) + (Aa. v)((Av s) - (Av Cv)) = 0 

(2.7) 

Using expressions (2.6). WC can climinatc the quantities (b and 4 in Eq. (2.7) and, on the basis of 
relations (2.3) and (2.5). reduce it to the form 

@(cp, a,,, E, k, A,,, Bke> C,,, I;, s,) = 0 (2.X) 

where A,,, RA,. and C‘,,,,, are the clemcnts of Ihe matrices ,4, R and (‘; h, and .3, arc the components of 
the vectors A and s. Equation (2.8) Itill be called the rcsolvent in the problem of investigating the 
conditions for precession of the yyro\t;lt about the vertical to exist, since its rcprescntation in the form 

c (a,coskcp + h, sinkq) = 0 
k=I 

(3.9) 

where ux and h,, arc functions of the paramctcra of problem (7. I ), (2.2) and of the constants E. k and O,,, 
enable one to determine the necessary conditions for the precession to exist: or/, = 0. hi, = 0 (k = I. . . . II). 

When invcstigaling the conditions for the existence of precession about an inclined axis (v # y) in a 
gyrostat. formulae (l.C,)-( 1.8) must bc considered togct,her with Eqs (2.1) and integrals (2.2). Using 
the first two integrals of (3.2). one can delerminc Cp and 4 as functions of the variables cp and Cp and the 
parameters of the problem. One can then obtain an analoguc of the rcsolvcnt (2.8) in which, unlike 
(2.8). the two variables cp and 4, occur. Thcreforc. alongwith the resolvcnt, one must also consider its 
derivative along tr:ljcctories of the equations for @ and $. Proceeding in this way one can also find Ihc 
second rcsolvcnt and then use the two rcsolvcnts to derive an equation of the form (2.9). 



A,, = 0 (i #;,. .-I,, = z.1, . \, =- \, = 0. t??r~ii,, lJ,,t77 (A,, - &) + s1 = 0 2 (3.4) 
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Precessh of the grr2crul type rrhozit llle l.erticrrl. Wc will now consider prcccssion of the gcncrJ type. 
that is, we will assume that neither of the quantities (p or Q in the expression for the angular velocity 
in (2.3) is ;I constant. We will first characterize the pendulum motions of ;I body with ;I fixed point in 
terms of precessional motion. Suppose that in the second equality of (2.3) 4 = 0. that is, the angular 
velocity vector does not change direction. not only in the system of coordinates attached to the body 
but also in fixed space. It follows from results of Mlodzcycvskii [22] that pendulum motion has the 
following properties: rotation occurs about ~1 horizontal axis which is a principal axis in the body. the 
body’s centre of mass lies in the principal plant perpendicular to the axis of rotation. and the rotation 

obeys the law Cp = 4 p,, + h,, sincp, where h,, and p,, ;u-e constants. 
As regards prcccssion about the vertical. the following results have been cstablishcd [CL 71. 

%~~r~rn 3. If a straight line in the body. making a constant angle with the vertical throughout the 
motion, is a princip;ll axis in the body. then the precession is either regular or is the motion of ;I physical 
pendulum. 

Tl~eorcw 4. A necessary condition for prcccssion of the gcncral type to exist in ;I heavy rigid body 
is k = 0. where k is the constant of the angular momentum integral. 

Tlleorenz 5. In the problem of the motion of a heavy rigid body. when the vector ;I lies in the principal 
plane of the inertia ellipsoid for the fixed point. precession of general type :tbout the vertical takes place 
only in Dokshevich’s solution [ 231. 

In the system of coordinates being LIS~C~ in this paper, this solution is 

v = (absincp, abcoscp,a,), 0 = Qa+$v 

@ = Jb,(b,+sincp), d, = b,@(b, + sincp)--’ 
(3.7) 

The parameters of the problem ;trc subject to the conditions 

s2 = 0, A,, = AZ3 = 0 

4A;, +&(A,, -A&CA,, + 3A 22-4A33)-A,1A33(A,,-A22)2 = 0 

ctg28, = 4243 s3 A,,[(A,, -A,,)(A,,-2A,,)+2A:,l -= 
2 

A,,[A,, -A,,(A,, -Ad1 Sl (ArA,,)[An(A~, -A,,b4:31 
(3.X) 

h, = 
qJA,@,, - 42) - 2A:31 2s,(A,, -A,,% 

&%dAzz -A,,) 
, hl,= 2’ b3= 

‘413 

AdA,, -AD-A,i ah(A 22-A,,) 

A- I %433 E = -s3ao-p 
A,, 

Dokshevich precession has an interesting property: the product of the velocities of rotation about 
the body’s own axis and of prcccssion is ii constant: (p$ = h&. The conditions imposed on the mass 
distribution in the body iiccording to (3.X). expressed in the principal system of coordinates, show that 
the body is a Hess gyroscope. This statcmcnt is not trivi:L since it rcquircs substantial computations 
[6]. The proof that formula (3.7) indeed describes Dokshevich’s solution is based on expressing solution 
(3.7) in terms of the components of the angular momentum vector in a special system of coordinates 
and reducing it to Dokshevich’s original form [23]. 

In the general CXC, the problem of investigating the conditions for prcccssion of the general type to 
exist remains unsolved. 

Re~ufurprecessiotz rrhol~t m/z idinccl on-is. Put Cp = II. 6 = 111 in Eq. ( 1.X). where II :tnd 171 tire constants. 
Then 

cp = nr+qo, I$ = mt +Qo, o1 = my,, 0, = my2, O3 = n +mao 
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The components yl and p are defined by ( I .6). The time-dependence of the vector components v, 
is given by fomulae ( 1. IO). 

Substitution of w, and l/, into Eqs (3.1 ) yields the following conditions for the parameters of the 
problem [X] 

n = M, A,, = A,, = 0, A,, = A22, s, = s2 = 0 

2 
&Kc, = A,,IA,,, 0,) = 7~12, .y3 = m4(A:,+A:,) 

Regular precession is described by the solution 

0, = msincp, q = mcoscp. cl$=m, ‘P=mt+‘P() 
2 

(3.Y) 

V, = COSKOSln(+- slnKOCOS cp, V2 = cosK,,coscp + sinK,sincpcoscp (XIO) 

V3 = -sinK”sincp 

Under thcsc conditions the component:, of the vector y arc y, = sincp. y2 = coscp. y3 = 0. The conditions 
that must bc satisfied by the moments of inertia and the components of the vector s of (3.0) may be 
written as 

.g = 0, .s;Jc-B-s-;JB-A = 0 

where A, B and C’ arc the principal moments of inertia. and ST are the components of the vector s in 
the principal systems of coordinates, that is. a rigid body performing regular precession is a Grioli 
gyroscope [4]. 

Regular Grioli precession [4] dcscribcs motion which is the superposition of two uniform rotations 
at equal velocities about ;I barycentric axis in the body and about an axis orthogonal to it in space. 

Pwccxsiotz LI/WM N Ilorizmtrrl r/.\-i.5 [ 171. Prcccssion about ;I horizontal axis is characterized by the 
following properties 

a = s/s, s.y=o, v.y=o 

that is, the following substitutions should be made in formulae ( I .6)-( 1.8) 

8, = n/2, Kg = ~12, y, = sincp, y2 = coscp, y3 = 0 

v, = -coscpcos~, v2 = sincpcos+, vj = -sin$ (3.11) 

q = iy,, 02 = oy2> w3 = ci, 

Rrcssan [ 171. studying the precession (3. I ) in Hess’s solution [‘I], used Grioli‘s equation (1.9). In 
the system of coordinates being used here, the condition for a rigid body to be a Hess gyroscope is 
determined 1~~ the first three cqualitics of (-3.6). Substituting formulae (3.1 1) into Eqs (3.1) and integrals 
(3.2), we obtain 

@ = -A,,lA,,$sincp, $ = ,,/2(E-s3sin$)A$ (3.12) 

It follows from the second equation of system (3.12) that $ = 4(r) is an elliptic function of time. The 
function cp(r) may be found from the first equation of the system. 

For the moment. no other types of precessional motion have been found in the classical problem 
(3.1). Analysis of the conditions imposed on the mass distribution of a rigid body in the classes of 
precessional motion of a heavy rigid body described above shows that the only bodies that precess in 
;I uniform force field are Lagrange gyroscopes (dynamically symmetric bodies with centre of mass on 
an axis of symmetry). IHess gyroscopes (bodies whose centres of mass lie on ;I perpendicular to a circular 
section of the gyration ellipsoid) and Grioli g,~roscopes (bodies whose centres of mass lie on a perpendicular 
to ;I circular section of the inertia ellipsoid). As a corollary of Theorem 3, we find that gyroscopes of 
the Kovalcvska\;a and Gor~~lchev-(‘hapl\,gin typcx admit of only trivial precession - rotation about a 
horizontal axis in SD~CC. 
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4. PRECESSIONAL MOTION OF A ZHUKOVSKII GYROSTAT [24] 

Let us consider Zhukovskii’s solution [24]. Putting s = 0, B = 0, C = 0 in Eqs (2.1) and (2.2), we obtain 

A& = (Ao+l)xw, v = vxo, Ao.o = 2E (Ao+k).v = k (4.1) 

It follows from the first equation of system (4.1) that the vector Am + A is fixed in space. It is natural 
to take the vector v in the form v = (Am + X)/X,,, wherenco = JAw + A]. Poisson’s equation in (4.1) 
holds by virtue of the first equation in system (4.1). ‘The dynamical equations of (4.1) have two first integrals 

A,o;+A,w;+A,w; = h* (A,o, + h,)* + (A,w, + h,)* + (A+, + I,)* = xi (4.2) 

It has been shown [25] that if the conditions 

h, = 0 (A2h2-&(A*-A,)(A3-A*) = A,&(A,-A,)-hf(~,-A,)] (4.3) 

are satisfied, the Zhukovskii gyrostat will precess semi-regularly about the vector v. Under these conditions 
the components of the vector a satisfy the equalities 

a2 = 0, a,Jm)-a3J = 0 

which are analogous to the equalities relating the components of the vector of the centre of mass and 
the principal moments of inertia for a Hess gyrostat. This means that, if conditions (4.3) are satisfied, 
a straight line in the gyrostat orthogonal to a circular section of the gyration ellipsoid centred at the 
fixed point will make a constant angle with the vector v. This angle is defined by 

coso _ J%(hl~-h3J~) 
0- 

xoJ(A,-A,)(A,-A,)(A,-A,) 

Under conditions (4.3) the curve in which the surfaces (4.2) intersect is in the plane 

J~[01(A2-A,)-h,l+J~j[W3(A3-A2)+h31 = 0 (4.4) 

Working from the first equality of system (4.2) Eq. (4.4) and Eqs (4.1) we obtain the relations 

CO1 = a,sincp + PO. O2 = yocos’p, w3 = EOsin(p + oo, @ = do + d,sincp (4.5) 

in which all the coefficients depend on the parameters of the problem. Transforming to a system of 
coordinates associated with the vector a, one can show that the solution (4.5) describes semi-regular 
precession of the first type of a Zhukovskii gyrostat about the vector A~J + A. For such precession, as 
in the case of (3.6) the function q(t) satisfies an equation of the form 4 = u. + uisincp, where u0 and 
ul are constants. 

5. EXAMPLES OF PRECESSION ABOUT THE VERTICAL IN 
PROBLEM (2.1) 

Regular precession. Put ci, = II, d, = m in formulae (2.3) (2.6) and (2.7) where n and m arc constants. 
This yields the following conditions for the parameters of the problem [12] 

‘4,2 = 0, B,2 = 0, C,2 = 0, 2m(A22-A,,)+B,,-B22 = 0 

m2(A,,-A,,) + C **-C,, = 0, m2A,,-mB,3-C,3 = 0 

m2A 23-mB2,-C23 = 0 

s1 = aoC13 + mA13(mao + n), s2 = aoC2, + mAz3(mao + n) 

h, = B,,ao- A,3(2mao + n). h, = B,,a, -A23(2mao + n) 

mn(A2* + A,, - Al,)+mh+B,,(n+mao)- 

-B.eao-a~~m2(A,l -A33)+ao(C,, -C,,)+s, = 0 

(5.1) 
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In regular precession, the functions cuj(t)vi(t) are defined by formulae (3.3). If B, = 0 (i, j = 1, 2, 3) 
conditions (5.1) imply the conditions outlined in [26]. 

Let us consider the case m = 0 (GJ = na), in which the gyrostat rotates uniformly about a fixed axis 
in space other than the vertical. System (5.1) implies the conditions 

A,, = 0, B,, = 0, C,, = C,, = C,, = 0, B,, = B,,, C,, = C,,, s, = s2 = 0 

h, = B,3ao-nA,,, h, = B,3a,-nA23, nB,,+a~~fa~(C,,-C~~) = 0 (5.2) 

and when these conditions are satisfied, the gyrostat will rotate uniformly about an inclined axis 06 # 0. 
This case cannot occur in the classical problem, since if B, = 0, Ckl = 0 (i, j = 1, 2, 3; k, I = 1, 2, 3), it 
follows from (5.2) that s1 = 0 (the centre of mass of the gyrostat is fixed). 

Semi-regular precession of the first type (4 = m, @ f n). We will present an example of precession of 
the first type in the case when 

ip = m(p, + wince) (5.3) 

where& = 1 + qi. This example is interesting because the motion of the gyroscope is not only precessional 
(see (2.3)) b u t 1 a so isoconical (91, with the moving and fixed hodographs of the angular velocity of the 
gyrostat symmetrical about a plane tangent to them. The method outlined in Section 2 yields the 
following conditions for the parameters of the problem 

A,, = 0, B,, = mA,2, C,, = -m2A,,, C,, = -mB23 

A2 = a@,,, s2 = -q,mB,,, 2mqoA13 = ab[2m(A22-A,,)+B,,-B221 

m2dA33 = ~bZ!m2(A,,-A22)-m(B,,-B22)+C22-CIIJ 

u&s, + mh,) = m2poqoA,, + L&,(C,~ + B,3m - A,,m2) 

mq,(B,, + B,, + 2mA33) = 2a&C,, + B,3m-A,3m2) 

mp@, , + B2, + 2mA33) + 2aolC2, - C33 + W 22 - B3,) - m2(A2, -A,,)] + 2(s3 + A31 = 0 

(5.4) 

To simplify the notation, the parameters po and q. have not been eliminated in Eqs (5.4). 
For this type of precession, the main variables of the problem are given by formulae (3.5) in which 

q(t) has the form 

q(t) = 2arctg pa 1 -q()tgFf [ ( 
-I 

1 1 
tg y 

Semi-regular precession of the second type. Following the approach described in [ 151, we put 

cp = nt, 4, = n 
do + e0 sincp 

; di = 1 + ei 

(5.5) 

(5.6) 

in the second equality of (2.3), that is, we again assume that the motion of the gyrostat is precessional 
and isoconical. It follows from (5.6) that 9(t) is an elementary function of time: 

$(t) = 2arctg [( d,+ e,tgg 
2 

The conditions for precession (5.6) to exist are [15] 

A,, = A,, = 0, B,, = B,, = 0, C,, = C,, = C,, = 0, B,, = B,, 

c,, = c,,, $1 = s2 = 0, h, = 0, h, = a,B13 + ne,‘ab(A,, -A,,) 

s3 = ao(C33 -Cl,) + nei1(abBc3 - c,$,,) 
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,2 
A,% = a,ab2(B33 -B,,) + e,d,'a,A,3 -ab(A,, - A22 + A,,) + 

+ d,'a,ab(A2, -A,,) - n-'e,'d,atB,,; di = l/( 1 - h2), ei = X2/( 1 - h2) 

h2(afA2, + aiA33) - 2ha,,abA,3 - af(A,, -A,,) = 0 

(A,, + oA~~)(Q,cJ + Qo12 - 4oA:,(R,o + R,,NQ,o + Q,> - 

(5.7) 

2 
-4oA,,(A,, -A,,)(R,o + R,) 

2 = 0; (3 = aila; 
2 

Q, = A,,[A,~-AI,(A~~-A,,)I 

Q, = &(A,,- A,, + A,,) + AdA,, - A,,)(A,, -A,, -A,,) 

4, = AdA,, -A,, + A,,), 
2 

Rl = A11A33-A13 

It has been shown [15] that conditions (5.7) are solvable. 

Precession ofthegenemf @pe. Examples of precession of the general type were indicated in [14, 151. 
Dokshevich’s solution (3.7) (3.8) has been generalized [14]. We note that under the conditions for 
existence found above, Eqs (3.8) are also satisfied except for the restriction on s&t and the last relation, 
The other conditions are 

c, = 0, (i#j), B,2 = B23 = 0, B,, = B,,, Cl, = C22, SO = 0 

h, = 0, h, = a0B13, h, = -b,b~1Bl,+a0(B33-Bl,), B,, = abb,B,3 

s3 = ao(C33 - Cl,) + 
.y,A,, 1 (A,, -A,,)(42 - 2A,,) + 24, J 

2 
(A22-A,,)[A&41, -A,,)-A,,1 

The following formulae define precession of the general type [15] 

0 = @(a+ v), Q2 = pt +p2sincp, v = (aisincp, abcoscp, a,) 

It takes place under the following conditions 

A,j = 0 (i f j), B;j = 0 (i# j), B,, = B22, Cl2 = C23 = 0, C,, = C2, 

2 2 

s2 = 0, h, = h, Cl,(A,, + A33 - 4Al,A33) = 0, a, = = 
A 

';a , s1 
11 33 (43-A,,)(%-A,,) 

A3 = 
A11B33 + B11CA33 - 2A11) 

9 P,= 
s,(A,, -A,,) + A,,(C,, - C,,) 

All -A33 (A33-A,,)2 

~A,I~I, 
CL2 = (A33-A,,)(A,, -2A,,) 

6. THE PRECESSION OF A RIGID BODY SUSPENDED ON A ROD 

The equations of motion of a body suspended on a rod may be written as follows [27]: 

A& +mp2[(e. &)e - o + (0. e)(w x e)] = Ao x o + R(r)p(e x r) (6.1) 

mr,[i’+oxr+20xi+(o.r)w-W2r]=mp[exw-(o.e)o+o2e]+Pv-R(t)r (6.2) 

where o is the angular velocity vector of a body of mass m, u is a unit vector in the direction of the 
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force of gravity P = mgu. r is a unit kcctor pointing along a rod of length r. from a tixed point (21 to 
the point 0 of suspension of the body. K(t) is the magnitude of the reaction, e is a unit vector directed 
from the point 0 to the ccntrc of mass C’. A is the inertia tensor of the body relative to the point 0, 
p = OC’, and g is the accclcration due to gravity. 

Suppose the mass distribution of the body at the point of suspension satisfies Hess’s conditions [21]. 
WC choose the moving system of coordinates so that e = (0. 0, I ). Then 

A,2 = A,, = _. 0, Af = A,,(A,, -A221 

We multiply both sides of Eq. (6. I ) scalarly by the vector e 

(Au. e)’ = Aw (0 xe). (6.3) 

By virtue of‘ the conditions imposed on A,, it follows from (6.3) that Am e = 0 is an invariant relation. 
Let us assume that the angular velocity vector of the body has the form (I) = (pe + wfjv, that is, the 
motion is semi-regular prccc\sion of the first type. Obviously, e v = cl,), that is. by the equality 
v v = I and (6.3). wc have 

@ = -%Ai:(A,&sincp + Aj3u0). v = (absincp, a;coscp, a,,) (6.4) 

It has been shown [ II ] that the components of the vector r arc 

t-1 = sincpsin$O, r2 = coscpsin$,, r3 = cOS$, (6.5) 

The conditions relating the parameters of problem (C).1), (6.2) 

“r,~O~a;,p(n,,sin~,, - a~,cosc$+~)sin~,, - mp2a;,w~(aOcos$, + aisin&) 

may serve as the conditions for semi-regular precession of a body suspended on a rod to exist. Note 
that the angles bctwccn two vectors of the triple e. r and v arc constant. The velocity of the point of 
suspension is also constant 

Thus, the existence of semi-regular precession of a body suspended on a rod has been demonstrated 
[I]. llowcvcr. that dots not mean that one can directly carry over the results of the solution of the classical 
problem to the solution of problem (6. I ), (6.2). For example, it has been proved [IO] that in the problem 
of the motion of a body suspended on a rod regular precessional motions about an inclined axis (Grioli 
precession) do not exist. 

7. THE PREC‘ESSION OF A SYSTEM OF COUPLED RIGID BODIES 

Let us consider a system or rigid gyrostats S,, S1, . . . , S,, (II 2 I), connected by hinges, in a uniform 
force ticld [24]. Gyrostat .C, has ;I fixed point O,, and gyrostats S, (i = 2, . . . , n) are linked together as 
a “chain” by ideal spherical hinges (I?. . . O,, in such a way that each gyrostat’s centre of mass and 
hinges arc collinear [I.?]. Let O,.gaz be :I tixcd system of coordinates wbosc axis 0,~ with unit vector v 
points vertically upwards. The moving systems of coordinates C,X’,‘!\-~!~~’ are associated with the ccntres 
of mass C‘, of the gyrostats and dircctcd along the principal axes of the inertia ellipsoid. 

Suppose A”’ is the central inertia tensor of the ith gyrostat. with diagonal elements A\” < A(20 < A!’ 
and (I) and A”’ arc the vectors of absolute angular velocity of the body of the ith gyrostat and its gyrostatic 
moment. Let r(l). r”+‘) (r 

litI) = k”‘r”‘) be the radius vectors of the points 0, and O,,, relative to the 
point C‘,, and o’,“, A.)” and c:” (j = I . 2. 3) the projections of the vectors cr) , (‘) A’” and r(‘) onto the x”’ I 
axis. WC shall a\sumc that A”” = 0. 
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The equations of motion of the system are 

A(‘)&(~) + o(l) x (A(l)o(i) + i(i)) = ,(i) x (R(i) _ k(i)R(i + 1) 
) (7.1) 

where R(‘) is the reaction exerted by the body Sj , and R(‘+ ‘) . IS the reaction exerted by the body Si+,. 
In scalar notation Eqs (7.1) give 

A(,‘)b,Ii) + (A;) _ A~))w~)o~) + ht)wt) _ h;)o:‘) = 

= e(O(R(li) _ k(i)R(i+ 0 
2 

3 ) _ e(O(R(i) _ k(i)R(i+ 1) 
3 2 2 )(123) 

Assume that et’ = 0, hq) = 0 (i = I, . . . , n). Then, on the assumption that 

(7.2) 

Eqs (7.2) imply the invariant relations 

A(i)e(i)o(i) + A(i)e(i)o(i) + h(i)e(l) 
I I 1 3 3 3 3 1 

_ h(i) (0 
1e3 = 0 (7.4) 

Thus, if the centre of mass Ci and the hinges O[, Oi+, of each gyrostat Si lie on one straight line 
perpendicular to a circular section of the gyrostat’s central ellipsoid of gyration, and the gyrostatic 
moment h(‘) lies in a plane perpendicular to the same circular section, then Eqs (7.2) admit of the system 
of invariant relations (7.4). Obviously, when n = 1, h, (I) = A?’ = 0, we obtain the Hess case [12]. 

Just as in the problem of a body suspended on a rod, the invariant relations (7.4) can be satisfied by 
considering the class of semi-regular precessional motions of bodies S; (putting ht’) =0): 

“(1) 
= ipiki+Wov, @i = o,,(u, +bisinqi); ki = OiOi+,/OiOi+ i (7.5) 

It can be shown [13] that when the equalities (7.4) hold, the motion of the chain of heavy rigid bodies 
may be divided into two motions: 1) motion of the polygonal line 0,02 . . . On+l as a chain of heavy 
rods of masses equal to those of the corresponding bodies and central moments of inertiaAT); 2) rotation 
of the body about the segments of the polygonal line. But if in addition relations (7.5) are true, then 
semi-regular precession of the system S,, . , S,, is the superposition of uniform rotation, at angular 
velocity oa, of the polygonal line 0 ,07 . . . 0,, +, as a rigid body about the vertical, and rotation of the 
bodies Si obeying relations (7.5). Note that under those condition all the segments lie in a single vertical 
plane, while some of the h,‘s in (7.5) may equal zero. 

Precessional motions of a coupled system of two asymmetric heavy bodies have been considered on 
the assumption that one body is precessing and the other is rotating uniformly about the vertical [16]. 
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