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Precessional motions of a rigid body may be classed among the most intuitive motions from the
mechanical point of view, while at the same time they are widely used in the theory of gyroscopic systems,
which is of importance in engincering. As A. Yu. Ishlinskii remarked [1, pp. 353, 354]: “After nutation
has damped out, the subsequent slow motion of the axis of the rotor, known as precessional motion,
agrees to a significant degree of accuracy with the precessional equations of gyroscope theory ... In
gyroscope theory, allowance for the nutational terms in the differential equations of motion of gyroscopic
systems turns out to be necessary when studying the behaviour of high-precision gyroscopes”.

In the problem of the motion of a hcavy rigid body with a fixed point, the regular precession of a
Lagrange gyroscope is a classical example of precessional motion. The foundations for the systematic
study of precessional motions in rigid body dynamics were laid by Appel'rot [2] and Grioli [3, 4].
Appel'rot considered precession about the vertical in gyroscopes whose inertia ellipsoid was an ellipsoid
of rotation, with its centrc of gravity lying in the equatorial plane (gyroscopes similar to Kovalevskaya
and Goryachev-Chaplygin gyroscopes). He showed that for such gyroscopes, motions in which the
constant angle between the principal axis and the vertical is not a rigid angle are dynamically impossible.

Grioli 3, 4] can be credited with numerous results in rigid body dynamics. The most important one
is the construction of a new solution of the Euler—-Poisson equations describing the regular precession
of a heavy rigid body about an inclined axis.

Several publications [5-15]f have considered the precessional motion of a rigid body with a fixed
point from general positions, proposing methods for investigating the conditions for precession to exist
not only in the classical problem but also in its generalizations.

Precessional motions of asymmetric bodies have been investigated in the problem of the motion of
a body suspended on a rod, and in the problem of the motion of a system of coupled rigid bodies [10,
11.13. 16].

I. THE KINEMATIC CONDITIONS FOR PRECESSIONAL MOTIONS
OF A RIGID BODY WITH A FIXED POINT

Supposc that, in a fixed space, some fixed direction characterized by a unit vector v (for example, the
direction of the axis of symmetry of a force field) exists. In addition, assume that +y is a unit vector, also
unchangeable in space. The origins of the vectors v and =y coincide with the fixed point O of the rigid
body. If we let @ denote the angular velocity of the body, we have the following equations for v and y

V=vxo, 7=y><(n (1.1)

where the dot denotes differentiation with respect to time in a moving system of coordinates.
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Let x, be the angle between the vectors v and . Then we have the obvious kinematic relations
vv=1l, yy=1 v-y=g (1.2)

where ¢ = cos K. The motion of the body is said to be precessional if, as long as the body is in motion,
the angle between the vectors a and vy, where a is a unit vector rigidly attached to the body (a = 0), is
constant. This motion may be characterized by an invariant relation

a-vYy = q (1.3)

where a, = cos8, and 8y is the constant angle between a and .
Let us differentiate both sides of Eq. (1.3) along trajectorics of the second equation of (1.1). We obtain
the equality w - (a x vy} = 0, that is

© = @(f)a+ ()Y (1.4)

where the casc a xy = 0 is excluded since it leads cither to uniform rotation of the body or to pendulum
motion. Substituting (1.4) into Eq. (1.1), we obtain

V= @ (D)(VXa)+0((VXY), T = ¢ ()(Yxa) (1.5)

As a rule [6-8], the moving system of coordinates is chosen in such a way that a = (0, 0, 1). Then
the relations (1.3) and y - y = 1 are satisfied by putting

Ti = apsing, Y, = @ycose, v, = ag (1.6)

where afy = V1 —a = sin,. Substituting expressions (1.6) into the scalar equations following from
the second equation of system (1.5), we obtain ¢ (r) = ¢(r). Bearing the first and third cqualities of
(1.2) and the first equation of (1.5) in mind, we obtain the following representation of the vector v

v = (cy+aghysing)y — byasing — by(y X a)cosd (1.7)

where
by = bolay, by = J1-co = sinky @,(1) = 0

In the approach taken here, 6, ¢ and ¢ are the Euler angles, so defined that the system of coordinates
associated with the vector a is the moving system and that associated with the vector vy is the fixed system.
Since @((t) = ¢, ¢(1) = ¢, we can rewrite formula (1.4) as

o = ¢a+dy (1.8)

Consequently, in precessional motions the components of the vector y arc expressed in terms of one
variable @, thosc of the vector v in terms of two variables ¢ and ¢, and the angular velocity vector has
the form (1.8). )

A precessional motion is called regular precession if ¢ and ¢ are constants; if one of these functions
is a constant, the motion is called semi-regular precession. If neither ¢ nor ¢ is a constant, the motion
is called a precession of the general type [3-6].

Besides relations (1.3) and (1.8), there is an equation due to Grioli [3] that can be taken as the
condition for motion to be precessional. It follows from the second equation of system (1.1), by the
condition y; = ay, that wyy, — w,y> = (), where w; and o, are the first two components of the vector o
in the moving system of coordinates. Differentiation of this cquality along trajectories of the kinematic
equations for y; and v, yields the cquation

. . 2 2
WyY) — 0Y; - ap( 0] + ©3) + 03(0,;Y, + ®,Y,) =0

Eliminating v, and y, from this cquation by using the equalitics yf + y% = a’ﬁ and m~y; — @y, = 0, we
arrive at Grioli’s equation

. . 372
®,0); — W, +w3(w:f+m§)—(w:f+w§) ctgf, = 0 (1.9)
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Equation (1.9) has only been used in [17]; it has not been widely employed otherwise.
[f the kinematic conditions for the motion to be precessional are considered in the form (1.3), (1.6),
the components of the vector v (1.7) are:

V| = agcosing — by(cos@cosd ~ aysin@sing)
V, = apcos@ + by(sin@cosd + agcos@sind) (1.10)
Vi = agcg - byagsing

Another way of introducing the Euler angles, not including the angle between the vectors a and y
as onc of the Euler angles, is sometimes proposed for investigating precessional motions. Let i, v and
w be the Euler angles, where 1 1s the angle between the vectors a and v. Then

W = WSInuSINV+ Ucosv, , = wsinucosvV—usinv, ®; = U+ wcosu (1.11)

After substituting relations (1.11) into Eq. (1.9), we have
(Wit — i) sinu +w(2a + whsin‘uycosu = (i° + wsinlu)’ ctgh, (1.12)
Note that when x,, = 0 the vectors v and vy coincide, and consequently the angles i, v and w are identical

with 8y, ¢ and ¢, respectively. Differential equation (1.12) has the obvious solution i = ;. Tt can be
shown that its other solution is | 18]

COSuUCOSKy — cosf

cos(w —wy) =

sinkgsinu (1.13)

where wy and x, arc arbitrary constants. Thus, if the Euler angles are introduced in the traditional
manner, that is, arc not associated with the characteristic precession directions a and vy, but are defined
relative to the axis of symmetry of the force field (the vector v), the condition for the motion to be
precessional has the form (1.13).

2. AMETHOD FOR INVESTIGATING PRECESSION ABOUT
THE VERTICAL IN THE PROBLEM OF THE MOTION OF
A GYROSTAT UNDER THE INFLUENCE OF POTENTIAL

AND GYROSCOPIC FORCES

Let us consider the problem of the motion of a gyrostat with a fixed point under the influence of potential
and gyroscopic forces, which is described by differential cquations of the Kirchhoff class [19, 20]

Ad):(Aw+l)xw+wav+.v><v+v><Cv, V=vXxe (2.1
which have integrals
(A0 @) -2(s-v)+(Cv-v) =2E, v-v=1, 2(A0+A) - v-(Bv-v) = 2k (2.2)

where E and k arc arbitrary constants. In Eqgs (2.1) and (2.2), @ = (o, 0, 03) is the angular velocity
of the gyrostat, v = (v, v, v3) is the unit vector of the axis of symmetry of the force field, A = (A}, A5,
;) is the gyrostatic moment, s = (s, 52, 53) is a vector collinear with the vector of the generalized centre
of mass, A is the inertia tensor, and B and C are 3 x 3 symmetric matrices. In this paper, Eqs (2.1) will
be interpreted as the equations of motion of a gyrostat in a force field which is the superposition of an
electric, a magnetic and a Newtonian field [20]. Equations (2.1) arc classificd as Kirchhoff equations
in view of the familiar hydrodynamic analogy between the present problem and the problem of the
motion of a body in a fluid [19, 20].

We will consider the precessional motions of the gyrostat about the vertical, that is, we puty = v in
Eqgs (1.3), (1.6) and (1.8). Then

V = (aysing, aycos@, a,), ©® = Qa+ v (2.3)
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Substituting the cxpression for e from (2.3) into the integrals (2.2), we obtain

O(Aa-V)+O(AV- V) = F(V,,V,,V3)

ﬁ, | . (24)
¢ (Aa-a) +200(Aa- V) + 0 (Av-Vv) = F,(V|,V,, V)
where
Fl(v), v, v3) = —(l-v)+1(8v-v)
2 (2.5)
Fy(Vi, Ve, V3) = 2E+2(s- V) - (Cv - V)
Relations (2.4) imply [6-8] that
. Fi(V, V5,V Aa- v) a AV -VYF,(V|,V,, V —sz,vq.
b = 1ty 1)~ ( & :( YFL(V), V4, Vy) 1V, Vo, V3) (2.0)

(Av-v) F3(v), vy V3)

where Fy(vy, vo, v3) = (da - a)(Av - v) - (Aa- v) > () by virtue of the tau llmt the matnxA 18 positive
definite and the variables v,. v, and v, satisty the kincmatic condition vi + v3 + vi= 1.

Since Poisson’s equation in system (2.1) holds for the equalities (-.3), we turn to the dynamical
equation in (2.1). Substituting expressions (2.3) into the first equation of system (2.1) and using the
second equation, we obtain a single vector equality. Since the vectors a, v and Aa x Av arc independent,
we consider the three equations obtained by cquating to zero the scalar products of these vectors and
the vector on the left of the aforementioned equality. It can be shown that the first two cquations are
linear combinations of Eqs (2.4). while the third is

¢ 2(Aa - a)(AV)’ - Fy(v), v5, vy)Tr(A) ~2(Aa- v)(4a - Av) |-

~¢’[(Aa)’(Aa- V) (Aa-a)(Aa- AV)] - O [(AV - v)(Aa AV) - (Aa- v)(AV)']+

+¢[(Aa- Bv)(Aa-v)—(Aa-a)(AV- Bv) +(Aa-a)(AV- L) - (Aa A)(Aa V)] + (2.7)
+0[(Aa- BV)(AV- V) - (Aa-V)(AV - BV)+(Aa- V)(AV-A)— (Av - V)(Aa A)]+
+(Av-v)((Aa-Ac)-(Aa-s))+(Aa-V)((AV-8s)~(Av-CV)) =

Using expressions (2.6). we can eliminate the quantities ¢ and ¢ in Eq. (2.7) and, on the basis of
refations (2.3) and (2.5). reduce it to the form

O(Q, ay, E, k, A By, Cops Ay 5)) = (2.8)

where A, By, and €, are the clements of the matrices A, B and (' A; and s; are the components of
the vectors N and s. Equation {2.8) will be called the resolvent in the problem of investigating the
conditions for precession of the gvrostat about the vertical to exist, since its representation in the form

Z (a,cosk® + b, sinkg) = 0 (2.9)

k=1

where ¢, and b, arc functions of the parameters of problem (2.1), (2.2) and of the constants [, & and 0,
enable one to determine the necessary conditions for the pruusmn toexista, =0.b, =0k =1.....n).

Remark. In the case of regular and semi-regular precession about the vertical, Egs (2.4), (2.5) and (2.7) must
be used.

When investigating the conditions for the existence of precession about an inclined axis (v # y) in a
gyrostat, formulae (1.6)—(1.8) must be considered together with Eqs (2.1) and integrals (2.2). Using
the first two integrals of (2.2), one can determine ¢ and ¢ as functions of the variables ¢ and ¢ and the
parameters of the problem. Onc can then obtain an analogue of the resolvent (2.8) in which, unlike
(2.8), the two variables @ and ¢ occur. Therefore, along. with the resolvent. one must also consider its
derivative along trajectories of the equations for ¢ and ¢. Proceceding in this way one can also find the
second resolvent and then use the two resolvents to derive an equation of the form (2.9).
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Precesstonal motions in rigid body dynamics

30THE PRECESSIONAL MOTIONS OF A HEAVY RIGID BODY
The cquations of the classical problem of the motion of a heavy rigid body follow from system (2.1)
under the conditions A = 0. B = (L. =
AD = AOXO+SXV., V= VXD (3.1)
These equations have first integrals
Ao -2(s-v)=2FE, v.v=1  A®-v =k (3.2)

Regular precession about the vertical. Putting @ = .0 = m in the seeond cequality of (2.3), where
and m are constants, we obtain

, :
M) =My, W= mV. o TR L NV TSI Yy = dgCOSRE, V= dg (3.3)

Applying the method described above for investigating precession to Egs (3.1) and (3.2), we obtain the
conditions

A, =0G#/) Ay = Ay s =8y =00 mndy a,)mz(AIl ~Ay)+5, =0 (3.4)
Conditions (3.4) show that the body is a Lagrange gvroscope (in the principal system of coordinates
A = B.sy# 0). The first three cqualitios of svstem (3.3) imply an invariant relation @ - s = const, that
is. the solution (3.3) is a special case ol the Lagrange solution. Regular precession of a Lagrange
gyroscope describes the motion ol a body which is a superposition of two uniform rotations about axes,
once of which is fixed in the body and the other. i space.

Semi-regular precession of the first vy about the vertical. Suppose that in (2.3) & = m, where i is a constant
O =MV @, =mV, = Q+ma,. V)= a,sinQ. Vo= agcos@, Vi = ag (3.5)
1t has been shown 6. 7} that the conditions for a solution (3.5) of Eqs (3.1) to exist arc
A = Ay = 0. Af% TAGA, -AL) s =5, =00 sy = aomzAzz (3.6)
¢ = -m(A, ;a;, sing + A uu“)A'{-l;

Let us express the conditions in {3.6) tor the matrix components 4, and the components of the vector
s in terms of the principul svstem of ceordimates

¥ = 0. sFJAB-C)-sT/JC(A-B) = 0

where A, B and Care the principle moments of inertia. and s, are the components of s in the principal
system of coordinates. Thus. the bady is a T less gyrostat [21]. I conditions (3.0) are satisfied, solutions
(3.5) will satisty the cquality ey - s = 95 this implies the [ollowing

Theorem 1. In the classical problem of the motion of a heavy rigid body., semi-regular precessional
motions about the vertical exist only in the special case of the Hess solution [21].

Note that the semi-regular precession (3.5). (3.0) deseribes the motion of a Hess gyroscope. which
is the superposition of uniform rotation about the vertical and non-uniform rotation ¢ of (3.0) about
a baryeentric axis in the body.

Semi-regular precession of the second wpe about the verical . 1Ewe put ¢ = n. ¢ # m in the second cquality
of (2.3), where noand e are constants, we obtain semi-regular precession of the second type. The
tollowing thcorem holds.

Theoren 2. In the classical problem ot the motion ol o rigid body with a fixed point. semi-regular
precession of the second tvpe about the vertical is dvnamically impossible.
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Precession of the general type about the vertical. We will now consider pruccssu)n of the general type.
that is, we will assume that neither of the quantities ¢ or ¢ in the expression for the angular velocity
in (2.3) is a constant. We will first characterize the pendulum motions of a body with a fixed point in
terms of precessional motion. Suppose that in the second equality of (2.3) ¢ = 0. that is, the angular
velocity vector does not change direction, not only in the system of u)ordmdtu attached to the body
but also in fixed space. It follows from results of Mlodzeyevskii [22] that pendulum motion has the
following properties: rotation occurs about a horizontal axis which is a principal axis in the body, the
body’s centre of mass lies in the principal planc perpendicular to the axis of rotation, and the rotation

obeys the law ¢ = v, + A, sing, where A, and i, are constants.
As regards precession about the vertical. the following results have been established [6, 7).

Theorem 3. If a straight line in the body. making a constant angle with the vertical throughout the
motion, is a prmmpdl axis in the body, then the precession is either regular or is the motion of a physical
pendulum.

is k=1, whcrc kis thc constant of the (msculdr momentum mtcgral.

Theorem 5. In the problem of the motion of a heavy rigid body, when the vector a lies in the principal
plane of the inertia ellipsoid for the fixed point. precession of general type about the vertical takes place
only in Dokshevich’s solution [23].

In the system of coordinates being used in this paper, this solution is

. ' . H
V = (asing, a,cos®, ay), © = @a+ v

: 0 (3.7)
¢ = Jb,(by +sin@), O = by;Q(b; + sinQ)
The parameters of the problem are subject to the conditions
5;=0, A, =A5=0
4 2 2
4413+ A3(A - Ap)(A) + 34 -4A5) - A Ay(A) —Ayp) =
2 2
ctg’0, = ApAis 53 _ Apl(A - An)(Ay -2445) +2435] (3.8)
0= 2 s = 5 J.
AplA—Ayn(A -4 5 (Ap - A D[A5(AY, —Azz)“A:.z]
2 i
b = agAz3(A) - Ay) —2415] b. = 251(Ay - Ap)ay b. = A
1= . » b2 = » by =
agA13(Ax - Ay) Ap(Ay —Azz)_A?,a ay(Ay—Ay)
s,ayA
E = _Slao_;]i‘o 3
13

Dokshevich prcccssmn has an mturutmg property: the product of the velocities of rotation about
the body’s own axis and of precession is a constant: ¢o = b-b+. The conditions imposed on the mass
distribution in the body according to (3.8), expressed in the principal system of coordinates, show that
the body is a Hess gyroscope. This statement is not trivial, since it requires substantial computations
[6]- The proof that formula (3.7) indced describes Dokshevich’s solution is based on expressing solution
(3.7) in terms of the components of the angular momentum vector in a special system of coordinates
and reducing it to Dokshevich’s original form [23].

In the general casce, the problem of investigating the conditions for precession of the general type to
exist remains unsolved.

Regular precession about an inclined axis. Put ¢ = n. ¢ = m in Eq. (1.8). where n and m are constants.
Then

QO =nt+Qy O =m+o,, O =my, W =my, O =n+ma,
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The components 7y, and v» arc defined by (1.6). The time-dependence of the vector components v;
is given by fomulae (1.10).

Substitution of ; and v; into Eqs (3.1) yields the following conditions for the parameters of the
problem [§]

n=m A, =An=0, A=A, s =5=0

tgky = Ap/Ay, By = W2, 53 = mi(AL+AT) 49
Regular precession is described by the solution
®; = msin@, ®, = McosP, W3 =m, @ = mt+Q,
V| = CosKysinQ — simcocosz(p, V, = €OSK(COS® + sinK,sin@pcos @ (3.10)

V3 = -sinK,sing

Under these conditions the components of the vector y are y; = sing, v> = cos@, y; = 0. The conditions
that must be satisfied by the moments of inertia and the components of the vector s of (3.9) may be
written as

s¥ =0, s}"«/C~B—s§kA/B—A=O

where A, B and C are the principal moments of inertia, and 57 are the components of the vector s in
the principal systems of coordinates, that is, a rigid body performing regular precession is a Grioli
gyroscope [4].

Regular Grioli precession [4] describes motion which is the superposition of two uniform rotations
at equal velocitics about a baryeentric axis in the body and about an axis orthogonal to it in space.

Precession about a horizontal axis [17]. Precession about a horizontal axis is characterized by the
tollowing propertics

a=s/s, s y=0, v.y=0
that is, the following substitutions should be made in formulac (1.6)-(1.8)

0, = W2, K, =Tmw2, ¥, =sinp, Yy, =cosp, ;=0

vV, = —cos@Qcosd, Vv, = sinpcosd, Vv, = —sind (3.11)
@ = ¢y, 0, =0y @3 = ¢

Bressan [17], studying the precession (3.1) in Hess™s solution [21], used Grioli’s equation (1.9). In
the system of coordinates being used here, the condition for a rigid body to be a Hess gyroscope is
determined by the first three cqualitics of (3.6). Substituting formulac (3.11) into Egs (3.1) and integrals

(3.2), we obtain
§ = —A;/Aybsing, & = J2(E-s,sing)A;, (3.12)

It follows from the sccond equation of system (3.12) that ¢ = ¢(¢) is an clliptic function of time. The
function @(t) may be found from the first equation of the system.

For the moment. no other types of precessional motion have been found in the classical problem
(3.1). Analysis of the conditions imposed on the mass distribution of a rigid body in the classes of
precessional motion of a heavy rigid body described above shows that the only bodies that precess in
a uniform force field are Lagrange gyroscopes (dynamically symmetric bodies with centre of mass on
an axis of symmetry), Hess gyroscopes (bodies whose centres of mass lic on a perpendicular to a circular
section of the gyration ellipsoid) and Grioli gyroscopes (bodies whose centres of mass lie on a perpendicular
to a circular section of the inertia ¢llipsoid). As a corollary of Theorem 3, we find that gyroscopes of

horizontal axis in space.
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4. PRECESSIONAL MOTION OF A ZHUKOVSKII GYROSTAT [24]
Let us consider Zhukovskii’s solution [24]. Puttings = 0, 8 = 0, C = 0 in Egs (2.1) and (2.2), we obtain
A® = (AO+M) X0, V=VvXx0, A0 0 =2E (A@+A)-v =k 4.1
It follows from the first equation of system (4.1) that the vector Aw + X is fixed in space. It is natural
to take the vector v in the form v = (Ao + N)/x,, where xy = |{4o + A|. Poisson’s equation in (4.1)
holds by virtue of the first equation in system (4.1). The dynamical equations of (4.1) have two first integrals
A0+ Ay00 4 Ay05 = B (A0, + )7 + (4,0, + 1) + (4,0, + 1) = xj (4.2)
It has been shown [25] that if the conditions
2 2 2

are satisfied, the Zhukovskii gyrostat will precess semi-regularly about the vector v. Under these conditions
the components of the vector a satisfy the equalitics

a, =0, al«/Al(Aa‘Az)‘as«/As(Al‘Az) =0

which are analogous to the equalities relating the components of the vector of the centre of mass and
the principal moments of inertia for a Hess gyrostat. This means that, if conditions (4.3) are satisfied,
a straight line in the gyrostat orthogonal to a circular section of the gyration ellipsoid centred at the
fixed point will make a constant angle with the vector ». This angle is defined by

cosf, = AZ(KIA/A3(A3_AZ)_}‘G'\/Al(Az_Al))
o=
X0 (A=A (A, ~ A (A; - A))

Under conditions (4.3), the curve in which the surfaces (4.2) intersect is in the plane

JA(Ay— Al (Ay - A) = A1+ JA3 (A — A)[03(A; — Ay) +A;] = 0 (4.4)

Working from the first equality of system (4.2), Eq. (4.4) and Eqs (4.1), we obtain the relations
O, = 0sinQ+ Py, ®, = Y,c08Q, ©®; = gsin@+0G, ¢ = dy+dsing (4.5)

in which all the coefficients depend on the parameters of the problem. Transforming to a system of
coordinates associated with the vector a, one can show that the solution (4.5) describes semi-regular
precession of the first type of a Zhukovskii gyrostat about the vector 4w + A. For such precession, as
in the case of (3.6), the function @(t) satisfies an equation of the form ¢ = p; + y,sing, where yy and
W are constants.

5. EXAMPLES OF PRECESSION ABOUT THE VERTICAL IN
PROBLEM (2.1)

Regular precession. Put ¢ = n, & = m in formulae (2.3), (2.6) and (2.7), where n and m are constants.
This yields the following conditions for the parameters of the problem [12]

Ap =0, Bp=0, Cp=0, 2m(Ay-A;)+B;;-By =20
m'(Ap—Aj)+Cp-Cyy = 0, m2A13—mBl3—C,3 =0

m2A23—mBz3"C23 =0

s; = agCz+mAj(may+n), s, = agCyy + mA,;(mag+n) (5.1)
A = Bjsag—A;3(2mag+n), A, = Byag—Ay(2mag+n)

mn(Ay,, +As3—Ay) + mhsy+ B(n+ may) -

~ Byymag —agm (A — Ay3) +ag(Cy; — Cy3) +53 = 0
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In regular precession, the functions (1) v;(¢) are defined by formulae (3.3). If B; = 0 (i,j = 1, 2, 3),
conditions (5.1) imply the conditions outlined in [26].

Let us consider the case m = 0 (w = na), in which the gyrostat rotates uniformly about a fixed axis
in space other than the vertical. System (5.1) implies the conditions

Ap=0, Bj;=0, Cp,=C;3=C3=0, B =By, C;=Cp, s5=5=0

5.2
A, = Bjzag—nAy;, A, = Byag—nA,;, nBj +s3+ay(Cy —Cy3) =0 (5:2)

and when these conditions are satisfied, the gyrostat will rotate uniformly about an inclined axis ag # 0.
This case cannot occur in the classical problem, since if B; =0, C; = 0(;,j = 1,2, 3;k, 1= 1,2, 3), it
follows from (5.2) that s; = 0 (the centre of mass of the gyrostat is fixed).

Semi-regular precession of the first type (¢ = m, ¢ # n). We will present an example of precession of
the first type in the case when

¢ = m(py + gysing) (5.3)

where pj = 1 + gj. This example is interesting because the motion of the gyroscope is not only precessional
(see (2.3)) but also isoconical [9], with the moving and fixed hodographs of the angular velocity of the
gyrostat symmetrical about a plane tangent to them. The method outlined in Section 2 yields the
following conditions for the parameters of the problem

Ay =0, B =mAp, Cp= ‘m2A12’ Cpy = -mBy,

Ay = agBy, sy = —agmBy, 2mgoAyy = agl2m(Ay—Ayy) + By - By
’"ZQ(Z)AB = a;)ztmz(An —Ayp)—m(By - By)+Cp— CllJ 54
ag(s; +mh;) = m2p0q0A33+a0a(')(C13+Bl3m—A13m2) o4

, 2
mqy(B; + Byy + 2mAy;) = 2a4(Ci3+ B;ym—A3m”)

mpo(B, + By, +2mAy;) + ZaOLC22 —C33+ m(B,y — By3) - mz(Azz - A33)J +2(s5 + Ay =0

To simplity the notation, the parameters p, and g, have not been eliminated in Eqs (5.4).
For this type of precession, the main variables of the problem are given by formulae (3.5) in which
©(¢) has the form

-1
o) = 2arctg[p0(1 —qotg'—g—t) tg'%t] (5.5)

Semi-regular precession of the second type. Following the approach described in [15], we put

n

2 2
- . = 5.6
dy + eysing’ do = 1+ey (5.6)

(p:n[’¢:

in the second equality of (2.3), that is, we again assume that the motion of the gyrostat is precessional
and isoconical. It follows from (5.6) that ¢(¢) is an elementary function of time:

-1
o(t) = 2arctg[(d0+e0tg%t) tg%t]

The conditions for precession (5.6) to exist are [15]
Ap=Ay=0 B, =By;=0 Cp,=C;3=C;=0 By =8By
-1
Chi=Cp, s, =5,=0, XA =0, A =aoB3+neyay(Ap-Ay)

-1,
53 = ag(Csy3—Cyy) + negy (agBi3—coByy)
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)‘3‘1(')2 = 00052(333‘311)+eodalaoA13‘“(')(Au'A22+A33)+

+dy agaly(Ay — Agy) -1 e dopaly Byyy dl = U(1-2Y), et = A1 =A%)

A (a5 Ay + a2A53) — 2NayapA 3 - dy (Agy = Ay) = 0 (5.7)
(Ay + OARNQ,6 + Qp) — 40A°(R,6 + Ry)(Q,0 + Q) -
_46A%(Ay - A )(R,G+R)) = 0, © = diay

o
2
Q) = A(Ap - A+ An) +AuR(Ap - A (A~ A - Ay)

2
AZZ[AD_AII(AZZ-AII)]

2
Ry = Ap(Ay —Ap+Asy), R = AjA;-Ag

It has been shown [15] that conditions (5.7) are solvable.

Precession of the general type. Examples of precession of the general type were indicated in [14, 15].
Dokshevich’s solution (3.7), (3.8) has been generalized [14]. We note that under the conditions for
existence found above, Eqs (3.8) are also satisfied except for the restriction on s3/s| and the last relation.

The other conditions are
Cy=0, (i#)), By =8By =0 By =8By, C,;=Ch =0
Ay =0, A =aoByy, Ay =-bby By +ay(By-By), By, = aph;B;
51A13|_(A11 ~Ap)Ayp—2A5)+ 2A%3J
(Ap-A))[A3(A) - Ap) - A%)

53 = ag(Cy3-Cyy) +

The following formulae define precession of the general type [15]
® = @a+v), ¢ =p +,sing, Vv = (apsing, aycose, a,)
It takes place under the following conditions
A;=0(i#)), B;=0(i#)), B =By, C,=Cy=0 C,=Cxy

2 2
Ay s = Ci3(Af + A33 - 44, As)
Ap-Ay ! (A;3-A1)(2A5-Ayy)

5,20, A =Xk =0, ay=

- A By + B (A —24y,) W = 5i(Ay —Ag) + A4, (C; - Cyy)

3 ’ 1
Ay~ Ay (Ay-A)

U, = 2AIICB
: (A33~All)(A11_2A33)

6. THE PRECESSION OF A RIGID BODY SUSPENDED ON A ROD

The equations of motion of a body suspended on a rod may be written as follows {27]:
Ao +mp’(e- @)e-0+(@-e)(@xe)] = A0 X0+ R(1)p(eXr) (6.1)
mrlf + OXr+20XT+ © Nno- cozr] =mple X @ — (®-e)o+ mze] + Pv-R(@r (6.2)

where o is the angular velocity vector of a body of mass n1, v is a unit vector in the direction of the
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force of gravity P = mgw, r is a unit vector pointing along a rod of length ry from a fixed point (0} to
the point O of suspension of the body. R(t) is the magnitude of the reaction, e is a unit vector directed
from the point O to the centre of mass €. A is the inertia tensor of the body relative to the point O,
p = OC, and g is the acccleration due to gravity.

Suppose the mass distribution of the body at the point of suspcmion satisfics Hess's conditions [21].
We choose the moving system of coordinates so that e = (0. 0, ). Then

2
Ap = Ay =0, A = Ai(A) -Ap)

We multiply both sides of Eq. (6.1) scalarly by the vector e
(Aw e) = Ao - (o xe). (6.3)

By virtue of the conditions imposed on A, it follows from (6.3) that A - e = () is an invariant rclation.
Let us assume that the angular velocity vector of the body has the form o = ¢e + wyp, that is, the
motion is semi-regular precession of the first type. Obviously, e - v = a,, that is. by the cquality
v-v = [ and (6.3), we have

@ = oA (A apsing + Apap), v = (apsing, aycosQ, ay) (6.4)

It has been shown [11] that the components of the vector r are
ry = sin@singg, r, = cos@sing,, ry = cosd, (6.5)

The conditions relating the parameters of problem (6.1), (6.2)

2 . 1 . 20 2 L
mroWud,p{agsin®, — a,cos ) sind, — mp~ay®y(agcosdy + agsind,) —
. L
—mgpaysing, + Wyaya A, cosy = 0
2 ' . [ 2 '
mrop®aay(a,cosd, —aysin®g) —mgpay + WyagayA,, = 0

may serve as the conditions for semi-regular precession of a body suspended on a rod to exist. Note
that the angles between two vectors of the triple e, r and v arc constant. The velocity of the point of
suspension is also constant

1 «
vy = r(,|w0(a0c05(p(, - aosm%)[

Thus, the existence of semi-regular precession of a body suspended on a rod has been demonstrated
[1]. However, that does not mean that one can directly carry over the results of the solution of the classical
problem to the solution of problem (6.1), (6.2). For example, it has been proved [10] that in the problem
of the motion of a body suspended on a rod regular precessional motions about an inclined axis (Grioli
precession) do not exist.

7. THE PRECESSION OF A SYSTEM OF COUPLED RIGID BODIES
Let us consider a system or rigid gyrostats Sy, So, ..., S, (n = 1), connected by hinges, in a uniform
forcc ficld [24]. Gyrostat S, has a fixed point Oy, and gyrostats S; (i = 2, ... , n) arc linked together as
a “chain” by ideal spherical hinges O-, ..., O, in such a way that cach gyrostat’s centre of mass and

hmgcs arc collinear [13]. Let Oz be a hxgd system of coordmates whosc axis Oz with unit vector v
)0

points vertically upwards. The moving systems of coordinates C, ,\1 X5 W) are associated with the centres
of mass C; of thc gyrostats and dirccted along the principal axes of the incrtia cllipsoid.

Suppose A is the central incrtia tensor of the ith gyrostat, with diagonal clementsAl < Ag) < Ag)
and o and A" are the vectors of absolute angular velocity of the body of the ith gyrostat and its gyrostatic
moment. Let r(’) WD+ = 1 Op) be the radius vectors of the points O; and O, relative to the
point (;, and u) "and (’/ (j = 1, 2. 3) the projections of the vectors @, A and ¥ onto the x(,»i)
axis. We shall dxsumu that £ = (),
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The equations of motion of the system are

()

A0 + 0 x (A0 + A1) = 1P x (RY _ IR D (7.1)

where R® is the reaction exerted by the body S; _, and RY™* D is the reaction exerted by the body S, ;.
In scalar notation Eqs (7.1) give

A(l) (l)+(A(l) A('))(O(zl)(l)g’)+7\,(i)0)(l) 7\.(')(1);’) -

: o (7.2)
- ezl)(Rw—k(‘)RgH l)) (l)(R(‘) k(l)R(l+ 1)) (123
Assume that e(’) = 0, lg) =0 =1,...,n). Then, on the assumption that
N INGYIRT i i BYIRT i
el AP~ A - e AP AT AD) = 0 73
Eqgs (7.2) imply the invariant relations
A(li) f.)w(l,) A(}i) ;z)w(;) Xgi)eii) 3 ?»(li)egi) -0 (7.4)

Thus, if the centre of mass C; and the hinges O;, O, of each gyrostat §; lic on one straight line
perpendlcular to a circular section of the gyrostat’s central ellipsoid of gyration, and the gyrostatic
moment A lies in a plane perpendicular to the same c1rculdr section, then Eqs (7.2) admit of the system
of invariant relations (7.4). Obviously, when n = 1, k( = A{!) = 0, we obtain the Hess case [12].

Just as in the problem of a body suspended on a rod the andI‘ldnt relations (7.4) can be satisfied by
considering the class of semi-regular precessional motions of bodies S; (putting A®) =0):

0 = ok, +wgv, §; = 0y(a, +b;sing): k; = 0,0,,,/0,0,,, (7.5)

It can be shown [13] that when the equalities (7.4) hold, the motion of the chain of heavy rigid bodies
may be divided into two motions: 1) motion of the polygonal line O,0; ... O, as a chain of heavy
rods of masses equal to those of the corresponding bodies and central moments of mertlaA(’) 2) rotation
of the body about the segments of the polygonal line. But if in addition relations (7.5) are true, then
semi-regular precession of the system S, ..., S, is the superposition of uniform rotation, at angular
velocity ay, of the polygonal line 0,0, ... O, as a rigid body about the vertical, and rotation of the
bodies S; obeying relations (7.5). Note that under those condition all the segments lie in a single vertical
plane, while some of the b;’s in (7.5) may equal zero.

Precessional motions of a coupled system of two asymmetric heavy bodies have been considered on
the assumption that one body is precessing and the other is rotating uniformly about the vertical [16].
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